New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations
نویسندگان
چکیده
منابع مشابه
New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations
A new family of eighth-order derivative-freemethods for solving nonlinear equations is presented. It is proved that these methods have the convergence order of eight. These new methods are derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured...
متن کاملSeventh-order iterative algorithm free from second derivative for solving algebraic nonlinear equations
متن کامل
New Families of Fourth-Order Derivative-Free Methods for Solving Nonlinear Equations with Multiple Roots
In this paper, two new fourth-order derivative-free methods for finding multiple zeros of nonlinear equations are presented. In terms of computational cost the family requires three evaluations of functions per iteration. It is proved that the each of the methods has a convergence of order four. In this way it is demonstrated that the proposed class of methods supports the Kung-Traub hypothesis...
متن کاملTHIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملNew Efficient Optimal Derivative-Free Method for Solving Nonlinear Equations
In this paper, we suggest a new technique which uses Lagrange polynomials to get derivative-free iterative methods for solving nonlinear equations. With the use of the proposed technique and Steffens on-like methods, a new optimal fourth-order method is derived. By using three-degree Lagrange polynomials with other two-step methods which are efficient optimal methods, eighth-order methods can b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Computational and Applied Mathematics
سال: 2012
ISSN: 2165-8935
DOI: 10.5923/j.ajcam.20120203.08