New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations

A new family of eighth-order derivative-freemethods for solving nonlinear equations is presented. It is proved that these methods have the convergence order of eight. These new methods are derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured...

متن کامل

New Families of Fourth-Order Derivative-Free Methods for Solving Nonlinear Equations with Multiple Roots

In this paper, two new fourth-order derivative-free methods for finding multiple zeros of nonlinear equations are presented. In terms of computational cost the family requires three evaluations of functions per iteration. It is proved that the each of the methods has a convergence of order four. In this way it is demonstrated that the proposed class of methods supports the Kung-Traub hypothesis...

متن کامل

THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS

In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.    

متن کامل

New Efficient Optimal Derivative-Free Method for Solving Nonlinear Equations

In this paper, we suggest a new technique which uses Lagrange polynomials to get derivative-free iterative methods for solving nonlinear equations. With the use of the proposed technique and Steffens on-like methods, a new optimal fourth-order method is derived. By using three-degree Lagrange polynomials with other two-step methods which are efficient optimal methods, eighth-order methods can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Computational and Applied Mathematics

سال: 2012

ISSN: 2165-8935

DOI: 10.5923/j.ajcam.20120203.08